p-group, metabelian, nilpotent (class 4), monomial
Aliases: (C22×C8)⋊4C4, (C2×D4).4Q8, (C2×D4).42D4, C23⋊C4.1C4, (C2×C4).3C42, C4.10D4⋊6C4, C23.3(C4⋊C4), (C2×M4(2))⋊4C4, (C22×C4).39D4, C4.43(C23⋊C4), C23.4(C22⋊C4), C2.17(C23.9D4), C23.C23.2C2, C22.6(C2.C42), M4(2).8C22.4C2, (C2×C4).4(C4⋊C4), (C2×D4).47(C2×C4), (C2×Q8).42(C2×C4), (C2×C4).4(C22⋊C4), (C22×C4).68(C2×C4), (C2×C4○D4).3C22, (C22×C8)⋊C2.12C2, SmallGroup(128,127)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C22×C8)⋊C4
G = < a,b,c,d | a2=b2=c8=d4=1, dad-1=ab=ba, ac=ca, bc=cb, dbd-1=bc4, dcd-1=abc3 >
Subgroups: 192 in 81 conjugacy classes, 30 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C22⋊C8, C23⋊C4, C23⋊C4, C4.D4, C4.10D4, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C2×C4○D4, (C22×C8)⋊C2, C23.C23, M4(2).8C22, (C22×C8)⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C23⋊C4, C23.9D4, (C22×C8)⋊C4
Character table of (C22×C8)⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 1 | 1 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | i | -i | -i | -i | i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | i | -i | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -1 | -1 | -1 | -1 | 1 | -i | -i | i | i | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | -1 | i | i | -i | -i | -1 | linear of order 4 |
ρ9 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -i | -1 | 1 | -1 | 1 | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | i | -1 | 1 | -1 | 1 | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | i | -i | -i | i | -i | 1 | -1 | 1 | -1 | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | -i | i | i | -i | i | 1 | -1 | 1 | -1 | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | -1 | -i | -i | i | i | -1 | linear of order 4 |
ρ14 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -i | -i | i | i | -1 | -1 | -1 | -1 | 1 | i | i | -i | -i | 1 | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | -i | i | -i | -i | i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | -i | i | i | i | -i | -i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ83 | 2ζ87 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ8 | 2ζ85 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ87 | 2ζ83 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ85 | 2ζ8 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 16 28 18)(3 7)(4 14 30 24)(6 12 32 22)(8 10 26 20)(9 23 13 19)(11 21 15 17)(27 31)
G:=sub<Sym(32)| (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,16,28,18)(3,7)(4,14,30,24)(6,12,32,22)(8,10,26,20)(9,23,13,19)(11,21,15,17)(27,31)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,16,28,18)(3,7)(4,14,30,24)(6,12,32,22)(8,10,26,20)(9,23,13,19)(11,21,15,17)(27,31) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,16,28,18),(3,7),(4,14,30,24),(6,12,32,22),(8,10,26,20),(9,23,13,19),(11,21,15,17),(27,31)]])
Matrix representation of (C22×C8)⋊C4 ►in GL4(𝔽17) generated by
0 | 0 | 13 | 8 |
0 | 0 | 0 | 4 |
4 | 9 | 0 | 0 |
0 | 13 | 0 | 0 |
1 | 15 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 0 | 16 |
0 | 8 | 9 | 8 |
0 | 8 | 0 | 0 |
8 | 9 | 0 | 8 |
0 | 0 | 0 | 8 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 16 | 2 |
0 | 0 | 16 | 1 |
G:=sub<GL(4,GF(17))| [0,0,4,0,0,0,9,13,13,0,0,0,8,4,0,0],[1,0,0,0,15,16,0,0,0,0,1,0,0,0,15,16],[0,0,8,0,8,8,9,0,9,0,0,0,8,0,8,8],[1,1,0,0,0,16,0,0,0,0,16,16,0,0,2,1] >;
(C22×C8)⋊C4 in GAP, Magma, Sage, TeX
(C_2^2\times C_8)\rtimes C_4
% in TeX
G:=Group("(C2^2xC8):C4");
// GroupNames label
G:=SmallGroup(128,127);
// by ID
G=gap.SmallGroup(128,127);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,758,352,1466,521,2804,172,4037]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=d^4=1,d*a*d^-1=a*b=b*a,a*c=c*a,b*c=c*b,d*b*d^-1=b*c^4,d*c*d^-1=a*b*c^3>;
// generators/relations
Export